Social Bias Evaluation for Large Language Models Requires Prompt Variations

Auteurs : Rem Hida, Masahiro Kaneko, Naoaki Okazaki

Résumé : Warning: This paper contains examples of stereotypes and biases. Large Language Models (LLMs) exhibit considerable social biases, and various studies have tried to evaluate and mitigate these biases accurately. Previous studies use downstream tasks as prompts to examine the degree of social biases for evaluation and mitigation. While LLMs' output highly depends on prompts, previous studies evaluating and mitigating bias have often relied on a limited variety of prompts. In this paper, we investigate the sensitivity of LLMs when changing prompt variations (task instruction and prompt, few-shot examples, debias-prompt) by analyzing task performance and social bias of LLMs. Our experimental results reveal that LLMs are highly sensitive to prompts to the extent that the ranking of LLMs fluctuates when comparing models for task performance and social bias. Additionally, we show that LLMs have tradeoffs between performance and social bias caused by the prompts. Less bias from prompt setting may result in reduced performance. Moreover, the ambiguity of instances is one of the reasons for this sensitivity to prompts in advanced LLMs, leading to various outputs. We recommend using diverse prompts, as in this study, to compare the effects of prompts on social bias in LLMs.

Soumis à arXiv le 03 Jul. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.