A Survey on LLM-Based Agentic Workflows and LLM-Profiled Components
Auteurs : Xinzhe Li
Résumé : Recent advancements in Large Language Models (LLMs) have catalyzed the development of sophisticated agentic workflows, offering improvements over traditional single-path, Chain-of-Thought (CoT) prompting techniques. This survey summarize the common workflows, with the particular focus on LLM-Profiled Components (LMPCs) and ignorance of non-LLM components. The reason behind such exploration is to facilitate a clearer understanding of LLM roles and see how reusabile of the LMPCs.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.