Compressing Large Language Models by Streamlining the Unimportant Layer

Auteurs : Xiaodong Chen, Yuxuan Hu, Jing Zhang

Résumé : Large language models (LLM) have been extensively applied in various natural language tasks and domains, but their applicability is constrained by the large number of parameters of the models. Consequently, there is an increasing emphasis on compact models that exhibit high performance. In this study, we observe that different layers in LLM have varying degrees of perturbation on the hidden states, which allows us to identify less important layers. Based on this phenomenon, we propose LLM-Streamline, which consists of two parts: layer pruning, where we remove a set of consecutive layers with the lowest importance in the model according to the target sparsity; and layer replacement, where we train a lightweight model to substitute the pruned layers, thereby mitigating the performance degradation caused by pruning. In our experiments, we utilize structures such as a multi-layer perceptron (MLP) and a transformer layer as lightweight models and ultimately demonstrate that a single MLP can effectively fit the pruned layers. Comprehensive experiments show that our proposed method, LLM-Streamline, outperforms previous state-of-the-art (SOTA) model pruning methods.

Soumis à arXiv le 28 Mar. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.