FoldToken: Learning Protein Language via Vector Quantization and Beyond

Auteurs : Zhangyang Gao, Cheng Tan, Jue Wang, Yufei Huang, Lirong Wu, Stan Z. Li

arXiv: 2403.09673v2 - DOI (q-bio.BM)

Résumé : Is there a foreign language describing protein sequences and structures simultaneously? Protein structures, represented by continuous 3D points, have long posed a challenge due to the contrasting modeling paradigms of discrete sequences. We introduce \textbf{FoldTokenizer} to represent protein sequence-structure as discrete symbols. This innovative approach involves projecting residue types and structures into a discrete space, guided by a reconstruction loss for information preservation. We refer to the learned discrete symbols as \textbf{FoldToken}, and the sequence of FoldTokens serves as a new protein language, transforming the protein sequence-structure into a unified modality. We apply the created protein language on general backbone inpainting and antibody design tasks, building the first GPT-style model (\textbf{FoldGPT}) for sequence-structure co-generation with promising results. Key to our success is the substantial enhancement of the vector quantization module, Soft Conditional Vector Quantization (\textbf{SoftCVQ}).

Soumis à arXiv le 04 Fév. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.