DeLLMa: Decision Making Under Uncertainty with Large Language Models

Auteurs : Ollie Liu, Deqing Fu, Dani Yogatama, Willie Neiswanger

37 pages, 24 figures
Licence : CC BY 4.0

Résumé : The potential of large language models (LLMs) as decision support tools is increasingly being explored in fields such as business, engineering, and medicine, which often face challenging tasks of decision-making under uncertainty. In this paper, we show that directly prompting LLMs on these types of decision-making problems can yield poor results, especially as the problem complexity increases. To aid in these tasks, we propose DeLLMa (Decision-making Large Language Model assistant), a framework designed to enhance decision-making accuracy in uncertain environments. DeLLMa involves a multi-step reasoning procedure that integrates recent best practices in scaling inference-time reasoning, drawing upon principles from decision theory and utility theory, to provide an accurate and human-auditable decision-making process. We validate our procedure on multiple realistic decision-making environments, demonstrating that DeLLMa can consistently enhance the decision-making performance of leading language models, and achieve up to a 40% increase in accuracy over competing methods. Additionally, we show how performance improves when scaling compute at test time, and carry out human evaluations to benchmark components of DeLLMa.

Soumis à arXiv le 04 Fév. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.