zkLogin: Privacy-Preserving Blockchain Authentication with Existing Credentials

Auteurs : Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Yan Ji, Jonas Lindstrøm, Deepak Maram, Ben Riva, Arnab Roy, Mahdi Sedaghat, Joy Wang

Résumé : For many users, a private key based wallet serves as the primary entry point to blockchains. Commonly recommended wallet authentication methods, such as mnemonics or hardware wallets, can be cumbersome. This difficulty in user onboarding has significantly hindered the adoption of blockchain-based applications. We develop zkLogin, a novel technique that leverages identity tokens issued by popular platforms (any OpenID Connect enabled platform e.g. Google, Facebook, etc.) to authenticate transactions. At the heart of zkLogin lies a signature scheme allowing the signer to \textit{sign using their existing OpenID accounts} and nothing else. This improves the user experience significantly as users do not need to remember a new secret and can reuse their existing accounts. zkLogin provides strong security and privacy guarantees. By design, zkLogin builds on top of the underlying platform's authentication mechanisms, and derives its security from there. Unlike prior related works however, zkLogin avoids the use of additional trusted parties (e.g., trusted hardware or oracles) for its security guarantees. zkLogin leverages zero-knowledge proofs (ZKP) to ensure that the link between a user's off-chain and on-chain identities is hidden, even from the platform itself. We have implemented and deployed zkLogin on the Sui blockchain as an alternative to traditional digital signature-based addresses. Due to the ease of web3 on-boarding just with social login, without requiring mnemonics, many hundreds of thousands zkLogin accounts have already been generated in various industries such as gaming, DeFi, direct payments, NFT collections, ride sharing, sports racing and many more.

Soumis à arXiv le 22 Jan. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.