Denoising Diffusion Recommender Model

Auteurs : Jujia Zhao, Wenjie Wang, Yiyan Xu, Teng Sun, Fuli Feng, Tat-Seng Chua

Accepted by SIGIR 2024
Licence : CC BY 4.0

Résumé : Recommender systems often grapple with noisy implicit feedback. Most studies alleviate the noise issues from data cleaning perspective such as data resampling and reweighting, but they are constrained by heuristic assumptions. Another denoising avenue is from model perspective, which proactively injects noises into user-item interactions and enhances the intrinsic denoising ability of models. However, this kind of denoising process poses significant challenges to the recommender model's representation capacity to capture noise patterns. To address this issue, we propose Denoising Diffusion Recommender Model (DDRM), which leverages multi-step denoising process of diffusion models to robustify user and item embeddings from any recommender models. DDRM injects controlled Gaussian noises in the forward process and iteratively removes noises in the reverse denoising process, thereby improving embedding robustness against noisy feedback. To achieve this target, the key lies in offering appropriate guidance to steer the reverse denoising process and providing a proper starting point to start the forward-reverse process during inference. In particular, we propose a dedicated denoising module that encodes collaborative information as denoising guidance. Besides, in the inference stage, DDRM utilizes the average embeddings of users' historically liked items as the starting point rather than using pure noise since pure noise lacks personalization, which increases the difficulty of the denoising process. Extensive experiments on three datasets with three representative backend recommender models demonstrate the effectiveness of DDRM.

Soumis à arXiv le 13 Jan. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.