On Early Detection of Hallucinations in Factual Question Answering
Auteurs : Ben Snyder, Marius Moisescu, Muhammad Bilal Zafar
Résumé : While large language models (LLMs) have taken great strides towards helping humans with a plethora of tasks, hallucinations remain a major impediment towards gaining user trust. The fluency and coherence of model generations even when hallucinating makes detection a difficult task. In this work, we explore if the artifacts associated with the model generations can provide hints that the generation will contain hallucinations. Specifically, we probe LLMs at 1) the inputs via Integrated Gradients based token attribution, 2) the outputs via the Softmax probabilities, and 3) the internal state via self-attention and fully-connected layer activations for signs of hallucinations on open-ended question answering tasks. Our results show that the distributions of these artifacts tend to differ between hallucinated and non-hallucinated generations. Building on this insight, we train binary classifiers that use these artifacts as input features to classify model generations into hallucinations and non-hallucinations. These hallucination classifiers achieve up to $0.80$ AUROC. We also show that tokens preceding a hallucination can already predict the subsequent hallucination even before it occurs.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.