How can the optical variation properties of active galactic nuclei be unbiasedly measured?
Auteurs : Xu-Fan Hu (USTC), Zhen-Yi Cai (USTC), Jun-Xian Wang (USTC)
Résumé : The variability of active galactic nuclei (AGNs) is ubiquitous but has not yet been understood. Measuring the optical variation properties of AGNs, such as variation timescale and amplitude, and then correlating them with their fundamental physical parameters, have long served as a critical way of exploring the origin of AGN variability and the associated physics of the accretion process in AGNs. Obtaining accurate variation properties of AGNs is thus essential. It has been found that the damped random walk (DRW) process can well describe the AGN optical variation, however, there is a controversy over how long a minimal monitoring baseline is required to obtain unbiased variation properties. In this work, we settle the controversy by exhaustively scrutinizing the complex combination of assumed priors, adopted best-fit values, ensemble averaging methods, and fitting methods. Then, the newly proposed is an optimized solution where unbiased variation properties of an AGN sample possessing the same variation timescale can be obtained with a minimal baseline of about 10 times their variation timescale. Finally, the new optimized solution is used to demonstrate the positive role of time domain surveys to be conducted by the Wide Field Survey Telescope in improving constraints on AGN variation properties.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.