Non-destructive characterization techniques for battery performance and lifecycle assessment

Auteurs : Charlotte Gervillie-Mouravieff, Wurigumula Bao, Daniel A Steingart, Ying Shirley-Meng

arXiv: 2310.15396v1 - DOI (cond-mat.mtrl-sci)

Résumé : As global energy demands escalate, and the use of non-renewable resources become untenable, renewable resources and electric vehicles require far better batteries to stabilize the new energy landscape. To maximize battery performance and lifetime, understanding and monitoring the fundamental mechanisms that govern their operation throughout their life cycle is crucial. Unfortunately, from the moment batteries are sealed until their end-of-life, they remain a black box, and our current knowledge of a commercial battery s health status is limited to current (I), voltage (V), temperature (T), and impedance (R) measurements, at the cell or even module level during use. Electrochemical models work best when the battery is new, and as state reckoning drifts leading to an over-reliance on insufficient data to establish conservative safety margins resulting in the systematic under-utilization of cells and batteries. While the field of operando characterization is not new, the emergence of techniques capable of tracking commercial battery properties under realistic conditions has unlocked a trove of chemical, thermal, and mechanical data that has the potential to revolutionize the development and utilization strategies of both new and used lithium-ion devices. In this review, we examine the latest advances in non-destructive operando characterization techniques, including electrical sensors, optical fibers, acoustic transducers, X-ray-based imaging and thermal imaging (IR camera or calorimetry), and their potential to improve our comprehension of degradation mechanisms, reduce time and cost, and enhance battery performance throughout its life cycle.

Soumis à arXiv le 23 Oct. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.