Examining the Influence of Job Satisfaction on Individual Innovation and Its Components: Considering the Moderating Role of Technostress
Auteurs : Fatemeh Daneshmandi, Hassan Hessari, Tahmineh Nategh, Ali Bai
Résumé : Background: Employee innovation is a crucial aspect of organizations in the current era. Therefore, studying the factors influencing individual innovation is vital and unavoidable. Undoubtedly, job satisfaction is a significant variable in management sciences. Nowadays, all organizations are interconnected with technology. Objective: This research explores the relationship between job satisfaction and individual innovation, including its components, and the moderating role of technostress. Research Method: This study, in terms of purpose, is applied, and in terms of data collection method, it is a descriptive survey. Data collection tools included the Technostress Inventory by Tarafdar and colleagues (2007), Janssen's Individual Innovation Questionnaire (2000), and the Job Satisfaction Survey (JSS) by Spector (1994). The validity and reliability of these questionnaires were confirmed. The sample size for this study was 215, and data analysis was performed using SPSS and SMART-PLS software. Findings: Job satisfaction has a significant and positive relationship with individual innovation, idea generation, idea promotion, and idea implementation. Technostress moderates the relationship between job satisfaction and individual innovation, as well as idea generation and idea promotion. However, technostress does not play a moderating role in the relationship between job satisfaction and idea implementation. Conclusion: Based on the obtained results, organizations should take necessary measures to increase job satisfaction and reduce technostress among their employees.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.