Turning Dross Into Gold Loss: is BERT4Rec really better than SASRec?
Auteurs : Anton Klenitskiy, Alexey Vasilev
Résumé : Recently sequential recommendations and next-item prediction task has become increasingly popular in the field of recommender systems. Currently, two state-of-the-art baselines are Transformer-based models SASRec and BERT4Rec. Over the past few years, there have been quite a few publications comparing these two algorithms and proposing new state-of-the-art models. In most of the publications, BERT4Rec achieves better performance than SASRec. But BERT4Rec uses cross-entropy over softmax for all items, while SASRec uses negative sampling and calculates binary cross-entropy loss for one positive and one negative item. In our work, we show that if both models are trained with the same loss, which is used by BERT4Rec, then SASRec will significantly outperform BERT4Rec both in terms of quality and training speed. In addition, we show that SASRec could be effectively trained with negative sampling and still outperform BERT4Rec, but the number of negative examples should be much larger than one.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.