ChatGPT and Persuasive Technologies for the Management and Delivery of Personalized Recommendations in Hotel Hospitality

Auteurs : Manolis Remountakis, Konstantinos Kotis, Babis Kourtzis, George E. Tsekouras

17 pages, 12 figures
Licence : CC BY-NC-ND 4.0

Résumé : Recommender systems have become indispensable tools in the hotel hospitality industry, enabling personalized and tailored experiences for guests. Recent advancements in large language models (LLMs), such as ChatGPT, and persuasive technologies, have opened new avenues for enhancing the effectiveness of those systems. This paper explores the potential of integrating ChatGPT and persuasive technologies for automating and improving hotel hospitality recommender systems. First, we delve into the capabilities of ChatGPT, which can understand and generate human-like text, enabling more accurate and context-aware recommendations. We discuss the integration of ChatGPT into recommender systems, highlighting the ability to analyze user preferences, extract valuable insights from online reviews, and generate personalized recommendations based on guest profiles. Second, we investigate the role of persuasive technology in influencing user behavior and enhancing the persuasive impact of hotel recommendations. By incorporating persuasive techniques, such as social proof, scarcity and personalization, recommender systems can effectively influence user decision-making and encourage desired actions, such as booking a specific hotel or upgrading their room. To investigate the efficacy of ChatGPT and persuasive technologies, we present a pilot experi-ment with a case study involving a hotel recommender system. We aim to study the impact of integrating ChatGPT and persua-sive techniques on user engagement, satisfaction, and conversion rates. The preliminary results demonstrate the potential of these technologies in enhancing the overall guest experience and business performance. Overall, this paper contributes to the field of hotel hospitality by exploring the synergistic relationship between LLMs and persuasive technology in recommender systems, ultimately influencing guest satisfaction and hotel revenue.

Soumis à arXiv le 26 Jul. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.