RecallM: An Adaptable Memory Mechanism with Temporal Understanding for Large Language Models

Auteurs : Brandon Kynoch, Hugo Latapie, Dwane van der Sluis

8 pages, 7 figures, 1 table, Our code is publicly available online at: https://github.com/cisco-open/DeepVision/tree/main/recallm

Résumé : Large Language Models (LLMs) have made extraordinary progress in the field of Artificial Intelligence and have demonstrated remarkable capabilities across a large variety of tasks and domains. However, as we venture closer to creating Artificial General Intelligence (AGI) systems, we recognize the need to supplement LLMs with long-term memory to overcome the context window limitation and more importantly, to create a foundation for sustained reasoning, cumulative learning and long-term user interaction. In this paper we propose RecallM, a novel architecture for providing LLMs with an adaptable and updatable long-term memory mechanism. Unlike previous methods, the RecallM architecture is particularly effective at belief updating and maintaining a temporal understanding of the knowledge provided to it. We demonstrate through various experiments the effectiveness of this architecture. Furthermore, through our own temporal understanding and belief updating experiments, we show that RecallM is four times more effective than using a vector database for updating knowledge previously stored in long-term memory. We also demonstrate that RecallM shows competitive performance on general question-answering and in-context learning tasks.

Soumis à arXiv le 06 Jul. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.