A Hybrid Approach for Smart Alert Generation

Auteurs : Yao Zhao, Sophine Zhang, Zhiyuan Yao

Résumé : Anomaly detection is an important task in network management. However, deploying intelligent alert systems in real-world large-scale networking systems is challenging when we take into account (i) scalability, (ii) data heterogeneity, and (iii) generalizability and maintainability. In this paper, we propose a hybrid model for an alert system that combines statistical models with a whitelist mechanism to tackle these challenges and reduce false positive alerts. The statistical models take advantage of a large database to detect anomalies in time-series data, while the whitelist filters out persistently alerted nodes to further reduce false positives. Our model is validated using qualitative data from customer support cases. Future work includes more feature engineering and input data, as well as including human feedback in the model development process.

Soumis à arXiv le 02 Jui. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.