Investigating Gender Euphoria and Dysphoria on TikTok: Characterization and Comparison

Auteurs : SJ Dillon, Yueqing Liang, H. Russell Bernard, Kai Shu

Résumé : With the emergence of short video-sharing platforms, engagement with social media sites devoted to opinion and knowledge dissemination has rapidly increased. Among the short video platforms, TikTok is one of the most popular globally and has become the platform of choice for transgender and nonbinary individuals, who have formed a large community to mobilize personal experience and exchange information. The knowledge produced in online spaces can influence the ways in which people understand and experience their own gender and transitions, as they hear about others and weigh that experiential and medical knowledge against their own. This paper extends current research and past interview methods on gender euphoria and gender dysphoria to analyze what and how online communities on TikTok discuss these two types of gender experiences. Our findings indicate that gender euphoria and gender dysphoria are differently described in online TikTok spaces. These findings indicate that there are wide similarities in the words used to describe gender dysphoria as well as gender euphoria in both the comments of videos and content creators' hashtags. Finally, our results show that gender euphoria is described in more similar terms between transfeminine and transmasculine experiences than gender dysphoria, which appears to be more differentiated by gendering experience and transition goals. We hope this paper can provide insights for future research on understanding transgender and nonbinary individuals in online communities.

Soumis à arXiv le 31 Mai. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.