Short Answer Grading Using One-shot Prompting and Text Similarity Scoring Model

Auteurs : Su-Youn Yoon

7 pages, 2 figures

Résumé : In this study, we developed an automated short answer grading (ASAG) model that provided both analytic scores and final holistic scores. Short answer items typically consist of multiple sub-questions, and providing an analytic score and the text span relevant to each sub-question can increase the interpretability of the automated scores. Furthermore, they can be used to generate actionable feedback for students. Despite these advantages, most studies have focused on predicting only holistic scores due to the difficulty in constructing dataset with manual annotations. To address this difficulty, we used large language model (LLM)-based one-shot prompting and a text similarity scoring model with domain adaptation using small manually annotated dataset. The accuracy and quadratic weighted kappa of our model were 0.67 and 0.71 on a subset of the publicly available ASAG dataset. The model achieved a substantial improvement over the majority baseline.

Soumis à arXiv le 29 Mai. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.