The Art of SOCRATIC QUESTIONING: Zero-shot Multimodal Reasoning with Recursive Thinking and Self-Questioning

Auteurs : Jingyuan Qi, Zhiyang Xu, Ying Shen, Minqian Liu, Di Jin, Qifan Wang, Lifu Huang

15 pages, 12 figure, 2 algorithms
Licence : CC BY 4.0

Résumé : Chain-of-Thought prompting (CoT) enables large-scale language models to solve complex reasoning problems by decomposing the problem and tackling it step-by-step. However, Chain-of-Thought is a greedy thinking process that requires the language model to come up with a starting point and generate the next step solely based on previous steps. This thinking process is different from how humans approach a complex problem e.g., we proactively raise sub-problems related to the original problem and recursively answer them. In this work, we propose Socratic Questioning, a divide-and-conquer fashion algorithm that simulates the self-questioning and recursive thinking process. Socratic Questioning is driven by a Self-Questioning module that employs a large-scale language model to propose sub-problems related to the original problem as intermediate steps and Socratic Questioning recursively backtracks and answers the sub-problems until reaches the original problem. We apply our proposed algorithm to the visual question-answering task as a case study and by evaluating it on three public benchmark datasets, we observe a significant performance improvement over all baselines on (almost) all datasets. In addition, the qualitative analysis clearly demonstrates the intermediate thinking steps elicited by Socratic Questioning are similar to the human's recursively thinking process of a complex reasoning problem.

Soumis à arXiv le 24 Mai. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.