VicunaNER: Zero/Few-shot Named Entity Recognition using Vicuna
Auteurs : Bin Ji
Résumé : Large Language Models (LLMs, e.g., ChatGPT) have shown impressive zero- and few-shot capabilities in Named Entity Recognition (NER). However, these models can only be accessed via online APIs, which may cause data leak and non-reproducible problems. In this paper, we propose VicunaNER, a zero/few-shot NER framework based on the newly released open-source LLM -- Vicuna. VicunaNER is a two-phase framework, where each phase leverages multi-turn dialogues with Vicuna to recognize entities from texts. We name the second phase as Re-Recognition, which recognizes those entities not recognized in the first phase (a.k.a. Recognition). Moreover, we set entity correctness check dialogues in each phase to filter out wrong entities. We evaluate VicunaNER's zero-shot capacity on 10 datasets crossing 5 domains and few-shot capacity on Few-NERD. Experimental results demonstrate that VicunaNER achieves superior performance in both shot settings. Additionally, we conduct comprehensive investigations on Vicuna from multiple perspectives.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.