A semi-trailer truck right-hook turn blind spot alert system for detecting vulnerable road users using transfer learning

Auteurs : Charles Tang

9 pages, 13 figures
Licence : CC BY-SA 4.0

Résumé : Cycling is an increasingly popular method of transportation for sustainability and health benefits. However, cyclists face growing risks, especially when encountering semi-trailer trucks. This study aims to reduce the number of truck-cyclist collisions, which are often caused by semi-trailer trucks making right-hook turns and poor driver attention to blind spots. To achieve this, we designed a visual-based blind spot warning system that can detect cyclists for semi-trailer truck drivers using deep learning. First, several greater than 90% mAP cyclist detection models, such as the EfficientDet Lite 1 and SSD MobileNetV2, were created using state-of-the-art lightweight deep learning architectures fine-tuned on a newly proposed cyclist image dataset composed of a diverse set of over 20,000 images. Next, the object detection model was deployed onto a Google Coral Dev Board mini-computer with a camera module and analyzed for speed, reaching inference times as low as 15 milliseconds. Lastly, the end-to-end blind spot cyclist detection device was tested in real-time to model traffic scenarios and analyzed further for performance and feasibility. We concluded that this portable blind spot alert device can accurately and quickly detect cyclists and have the potential to significantly improve cyclist safety. Future studies could determine the feasibility of the proposed device in the trucking industry and improvements to cyclist safety over time.

Soumis à arXiv le 16 Jan. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.