On SORA for High-Risk UAV Operations under New EU Regulations: Perspectives for Automated Approach
Auteurs : Hamed Habibi, D. M. K. K. Venkateswara Rao, Jose Luis Sanchez-Lopez, Holger Voos
Résumé : In this paper, we investigate requirements to prepare an application for Specific Operations Risk Assessment (SORA), regulated by European Union Aviation Safety Agency (EASA) to obtain flight authorization for Unmanned Aerial Vehicles (UAVs) operations and propose some perspectives to automate the approach based on our successful application. Preparation of SORA requires expert knowledge as it contains technicalities. Also, the whole process is an iterative and time-consuming one. It is even more challenging for higher-risk operations, such as those in urban environments, near airports, and multi- and customized models for research activities. SORA process limits the potential socio-economic impacts of innovative UAV capabilities. Therefore, in this paper, we present a SORA example, review the steps and highlight challenges. Accordingly, we propose an alternative workflow, considering the same steps, while addressing the challenges and pitfalls, to shorten the whole process. Furthermore, we present a comprehensive list of preliminary technical procedures, including the pre/during/post-flight checklists, design and installation appraisal, flight logbook, operational manual, training manual, and General Data Protection Regulation (GDPR), which are not explicitly instructed in SORA manual. Moreover, we propose the initial idea to create an automated SORA workflow to facilitate obtaining authorization, which is significantly helpful for operators, especially the scientific community, to conduct experimental operations.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.