Catch Me If You Can: Semi-supervised Graph Learning for Spotting Money Laundering
Auteurs : Md. Rezaul Karim, Felix Hermsen, Sisay Adugna Chala, Paola de Perthuis, Avikarsha Mandal
Résumé : Money laundering is the process where criminals use financial services to move massive amounts of illegal money to untraceable destinations and integrate them into legitimate financial systems. It is very crucial to identify such activities accurately and reliably in order to enforce an anti-money laundering (AML). Despite tremendous efforts to AML only a tiny fraction of illicit activities are prevented. From a given graph of money transfers between accounts of a bank, existing approaches attempted to detect money laundering. In particular, some approaches employ structural and behavioural dynamics of dense subgraph detection thereby not taking into consideration that money laundering involves high-volume flows of funds through chains of bank accounts. Some approaches model the transactions in the form of multipartite graphs to detect the complete flow of money from source to destination. However, existing approaches yield lower detection accuracy, making them less reliable. In this paper, we employ semi-supervised graph learning techniques on graphs of financial transactions in order to identify nodes involved in potential money laundering. Experimental results suggest that our approach can sport money laundering from real and synthetic transaction graphs.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.