That Escalated Quickly: An ML Framework for Alert Prioritization

Auteurs : Ben Gelman, Salma Taoufiq, Tamás Vörös, Konstantin Berlin

Submitted to Usenix Security Symposium
Licence : CC BY-NC-SA 4.0

Résumé : In place of in-house solutions, organizations are increasingly moving towards managed services for cyber defense. Security Operations Centers are specialized cybersecurity units responsible for the defense of an organization, but the large-scale centralization of threat detection is causing SOCs to endure an overwhelming amount of false positive alerts -- a phenomenon known as alert fatigue. Large collections of imprecise sensors, an inability to adapt to known false positives, evolution of the threat landscape, and inefficient use of analyst time all contribute to the alert fatigue problem. To combat these issues, we present That Escalated Quickly (TEQ), a machine learning framework that reduces alert fatigue with minimal changes to SOC workflows by predicting alert-level and incident-level actionability. On real-world data, the system is able to reduce the time it takes to respond to actionable incidents by $22.9\%$, suppress $54\%$ of false positives with a $95.1\%$ detection rate, and reduce the number of alerts an analyst needs to investigate within singular incidents by $14\%$.

Soumis à arXiv le 13 Fév. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.