Personalized Understanding of Blood Glucose Dynamics via Mobile Sensor Data

Auteurs : Sam Royston

Technical Report, 9 Pages

Résumé : Continuous Blood Glucose (CGM) monitors have revolutionized the ability of diabetics to manage their blood glucose, and paved the way for artificial pancreas systems. In this paper we augment CGM data with sensor input collected by a smart phone and use it to provide analytical tools for patients and clinicians. We collected GPS data, activity classifications, and blood glucose data with a custom iOS application over a 9 month period from a single free-living type-1 diabetic patient. This data set is novel in terms of it's size, the inclusion of GPS data, and the fact that it was collected non-intrusively from a free-living patient. We describe a method to measure the occurrence of lifestyle \textit{events} based on GPS and activity data, and show that they can capture instances of food consumption and are therefore correlated to changes in blood glucose. Finally, we incorporate these event representations into our system to create useful visualizations and notifications to aid patients in managing their diabetes.

Soumis à arXiv le 02 Fév. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.