Diversity Awareness in Software Engineering Participant Research
Auteurs : Riya Dutta, Diego Elias Costa, Emad Shihab, Tanja Tajmel
Résumé : Diversity and inclusion are necessary prerequisites for shaping technological innovation that benefits society as a whole. A common indicator of diversity consideration is the representation of different social groups among software engineering (SE) researchers, developers, and students. However, this does not necessarily entail that diversity is considered in the SE research itself. In our study, we examine how diversity is embedded in SE research, particularly research that involves participant studies. To this end, we have selected 79 research papers containing 105 participant studies spanning three years of ICSE technical tracks. Using a content analytical approach, we identified how SE researchers report the various diversity categories of their study participants and investigated: 1) the extent to which participants are described, 2) what diversity categories are commonly reported, and 3) the function diversity serves in the SE studies. We identified 12 different diversity categories reported in SE participant studies. Our results demonstrate that even though most SE studies report on the diversity of participants, SE research often emphasizes professional diversity data, such as occupation and work experience, over social diversity data, such as gender or location of the participants. Furthermore, our results show that participant diversity is seldom analyzed or reflected upon when SE researchers discuss their study results, outcome or limitations. To help researchers self-assess their study diversity awareness, we propose a diversity awareness model and guidelines that SE researchers can apply to their research. With this study, we hope to shed light on a new approach to tackling the diversity and inclusion crisis in the SE field.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.