Finding Lookalike Customers for E-Commerce Marketing
Auteurs : Yang Peng, Changzheng Liu, Wei Shen
Résumé : Customer-centric marketing campaigns generate a large portion of e-commerce website traffic for Walmart. As the scale of customer data grows larger, expanding the marketing audience to reach more customers is becoming more critical for e-commerce companies to drive business growth and bring more value to customers. In this paper, we present a scalable and efficient system to expand targeted audience of marketing campaigns, which can handle hundreds of millions of customers. We use a deep learning based embedding model to represent customers and an approximate nearest neighbor search method to quickly find lookalike customers of interest. The model can deal with various business interests by constructing interpretable and meaningful customer similarity metrics. We conduct extensive experiments to demonstrate the great performance of our system and customer embedding model.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.