Patterns of Social Vulnerability -- An Interactive Dashboard to Explore Risks to Public Health on the US County Level
Auteurs : Darius Coelho, Nikita Gupta, Eric Papenhausen, Klaus Mueller
Résumé : Social vulnerability is the susceptibility of a community to be adversely impacted by natural hazards and public health emergencies, such as drought, earthquakes, flooding, virus outbreaks, and the like. Climate change is at the root of many recent natural hazards while the COVID-19 pandemic is still an active threat. Social vulnerability also refers to resilience, or the ability to recover from such adverse events. To gauge the many aspects of social vulnerability the US Center of Disease Control (CDC) has subdivided social vulnerabilities into distinct themes, such as socioeconomic status, household composition, and others. Knowing a community's social vulnerabilities can help policymakers and responders to recognize risks to community health, prepare for possible hazards, or recover from disasters. In this paper we study social vulnerabilities on the US county level and present research that suggests that there are certain combinations, or patterns, of social vulnerability indicators into which US counties can be grouped. We then present an interactive dashboard that allows analysts to explore these patterns in various ways. We demonstrate our methodology using COVID-19 death rate as the hazard and show that the patterns we identified have high predictive capabilities of the pandemic's local impact.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.