Non-verbal Facial Action Units-based Automatic Depression Classification

Auteurs : Chuang Yu

Licence : CC ZERO 1.0

Résumé : Depression is a common mental disorder that causes people to experience depressed mood, loss of interest or pleasure, feelings of guilt or low self-worth. Traditional clinical depression diagnosis methods are subjective and time consuming. Since depression can be reflected by human facial expressions, We propose a non-verbal facial behavior-based automatic depression classification approach. In this paper, both short-term behavior-based and clip-based depression classification are constructed. The final clip-level decision of short-term behavior-based depression detection is yielded by averaging the predictions of all short-term behaviors while we modelling behaviors contained in all frames based on two Gaussian Mixture Models. To evaluate the proposed approaches, we select a gender balanced subset from AVEC 2019 depression corpus containing 30 participants. The experimental results show that our method achieved more than 75% depression classification accuracy, where both GMM-based clip-level depression modelling and rank pooling-based short-term depression behavior modelling achieved at least 70% classification accuracy. The result indicates that our approach can leverage complementary information from both systems to achieve promising depression predictions from facial behaviors.

Soumis à arXiv le 20 Nov. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.