Structured Pruning Adapters
Auteurs : Lukas Hedegaard, Aman Alok, Juby Jose, Alexandros Iosifidis
Résumé : Adapters are a parameter-efficient alternative to fine-tuning, which augment a frozen base network to learn new tasks. Yet, the inference of the adapted model is often slower than the corresponding fine-tuned model. To improve on this, we propose Structured Pruning Adapters (SPAs), a family of compressing, task-switching network adapters, that accelerate and specialize networks using tiny parameter sets and structured pruning. Specifically, we propose a channel-based SPA and evaluate it with a suite of pruning methods on multiple computer vision benchmarks. Compared to regular structured pruning with fine-tuning, our channel-SPAs improve accuracy by 6.9% on average while using half the parameters at 90% pruned weights. Alternatively, they can learn adaptations with 17x fewer parameters at 70% pruning with 1.6% lower accuracy. Similarly, our block-SPA requires far fewer parameters than pruning with fine-tuning. Our experimental code and Python library of adapters are available at github.com/lukashedegaard/structured-pruning-adapters.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.