ZK-IMG: Attested Images via Zero-Knowledge Proofs to Fight Disinformation

Auteurs : Daniel Kang, Tatsunori Hashimoto, Ion Stoica, Yi Sun

Résumé : Over the past few years, AI methods of generating images have been increasing in capabilities, with recent breakthroughs enabling high-resolution, photorealistic "deepfakes" (artificially generated images with the purpose of misinformation or harm). The rise of deepfakes has potential for social disruption. Recent work has proposed using ZK-SNARKs (zero-knowledge succinct non-interactive argument of knowledge) and attested cameras to verify that images were taken by a camera. ZK-SNARKs allow verification of image transformations non-interactively (i.e., post-hoc) with only standard cryptographic hardness assumptions. Unfortunately, this work does not preserve input privacy, is impractically slow (working only on 128$\times$128 images), and/or requires custom cryptographic arguments. To address these issues, we present zk-img, a library for attesting to image transformations while hiding the pre-transformed image. zk-img allows application developers to specify high level image transformations. Then, zk-img will transparently compile these specifications to ZK-SNARKs. To hide the input or output images, zk-img will compute the hash of the images inside the ZK-SNARK. We further propose methods of chaining image transformations securely and privately, which allows for arbitrarily many transformations. By combining these optimizations, zk-img is the first system to be able to transform HD images on commodity hardware, securely and privately.

Soumis à arXiv le 09 Nov. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.