Exiting the Simulation: The Road to Robust and Resilient Autonomous Vehicles at Scale
Auteurs : Richard Chakra
Résumé : In the past two decades, autonomous driving has been catalyzed into reality by the growing capabilities of machine learning. This paradigm shift possesses significant potential to transform the future of mobility and reshape our society as a whole. With the recent advances in perception, planning, and control capabilities, autonomous driving technologies are being rolled out for public trials, yet we remain far from being able to rigorously ensure the resilient operations of these systems across the long-tailed nature of the driving environment. Given the limitations of real-world testing, autonomous vehicle simulation stands as the critical component in exploring the edge of autonomous driving capabilities, developing the robust behaviors required for successful real-world operation, and enabling the extraction of hidden risks from these complex systems prior to deployment. This paper presents the current state-of-the-art simulation frameworks and methodologies used in the development of autonomous driving systems, with a focus on outlining how simulation is used to build the resiliency required for real-world operation and the methods developed to bridge the gap between simulation and reality. A synthesis of the key challenges surrounding autonomous driving simulation is presented, specifically highlighting the opportunities to further advance the ability to continuously learn in simulation and effectively transfer the learning into the real-world - enabling autonomous vehicles to exit the guardrails of simulation and deliver robust and resilient operations at scale.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.