Adjusting for non-confounding covariates in case-control association studies

Auteurs : Siliang Zhang, Jinbo Chen, Zhiliang Ying, Hong Zhang

Résumé : There is a considerable literature in case-control logistic regression on whether or not non-confounding covariates should be adjusted for. However, only limited and ad hoc theoretical results are available on this important topic. A constrained maximum likelihood method was recently proposed, which appears to be generally more powerful than logistic regression methods with or without adjusting for non-confounding covariates. This note provides a theoretical clarification for the case-control logistic regression with and without covariate adjustment and the constrained maximum likelihood method on their relative performances in terms of asymptotic relative efficiencies. We show that the benefit of covariate adjustment in the case-control logistic regression depends on the disease prevalence. We also show that the constrained maximum likelihood estimator gives an asymptotically uniformly most powerful test.

Soumis à arXiv le 18 Oct. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.