An Ensemble of Convolutional Neural Networks to Detect Foliar Diseases in Apple Plants
Auteurs : Kush Vora, Dishant Padalia
Résumé : Apple diseases, if not diagnosed early, can lead to massive resource loss and pose a serious threat to humans and animals who consume the infected apples. Hence, it is critical to diagnose these diseases early in order to manage plant health and minimize the risks associated with them. However, the conventional approach of monitoring plant diseases entails manual scouting and analyzing the features, texture, color, and shape of the plant leaves, resulting in delayed diagnosis and misjudgments. Our work proposes an ensembled system of Xception, InceptionResNet, and MobileNet architectures to detect 5 different types of apple plant diseases. The model has been trained on the publicly available Plant Pathology 2021 dataset and can classify multiple diseases in a given plant leaf. The system has achieved outstanding results in multi-class and multi-label classification and can be used in a real-time setting to monitor large apple plantations to aid the farmers manage their yields effectively.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.