A Survey on the Network Models applied in the Industrial Network Optimization

Auteurs : Chao Dong, Xiaoxiong Xiong, Qiulin Xue, Zhengzhen Zhang, Kai Niu, Ping Zhang

26 pages, 11 figures, Journal

Résumé : Network architecture design is very important for the optimization of industrial networks. The type of network architecture can be divided into small-scale network and large-scale network according to its scale. Graph theory is an efficient mathematical tool for network topology modeling. For small-scale networks, its structure often has regular topology. For large-scale networks, the existing research mainly focuses on the random characteristics of network nodes and edges. Recently, popular models include random networks, small-world networks and scale-free networks. Starting from the scale of network, this survey summarizes and analyzes the network modeling methods based on graph theory and the practical application in industrial scenarios. Furthermore, this survey proposes a novel network performance metric - system entropy. From the perspective of mathematical properties, the analysis of its non-negativity, monotonicity and concave-convexity is given. The advantage of system entropy is that it can cover the existing regular network, random network, small-world network and scale-free network, and has strong generality. The simulation results show that this metric can realize the comparison of various industrial networks under different models.

Soumis à arXiv le 17 Sep. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.