SnowFormer: Context Interaction Transformer with Scale-awareness for Single Image Desnowing

Auteurs : Sixiang Chen, Tian Ye, Yun Liu, Erkang Chen

Résumé : Due to various and complicated snow degradations, single image desnowing is a challenging image restoration task. As prior arts can not handle it ideally, we propose a novel transformer, SnowFormer, which explores efficient cross-attentions to build local-global context interaction across patches and surpasses existing works that employ local operators or vanilla transformers. Compared to prior desnowing methods and universal image restoration methods, SnowFormer has several benefits. Firstly, unlike the multi-head self-attention in recent image restoration Vision Transformers, SnowFormer incorporates the multi-head cross-attention mechanism to perform local-global context interaction between scale-aware snow queries and local-patch embeddings. Second, the snow queries in SnowFormer are generated by the query generator from aggregated scale-aware features, which are rich in potential clean cues, leading to superior restoration results. Third, SnowFormer outshines advanced state-of-the-art desnowing networks and the prevalent universal image restoration transformers on six synthetic and real-world datasets. The code is released in \url{https://github.com/Ephemeral182/SnowFormer}.

Soumis à arXiv le 20 Aoû. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.