A Model-Based Reinforcement Learning Approach for PID Design
Auteurs : Hozefa Jesawada, Amol Yerudkar, Carmen Del Vecchio, Navdeep Singh
Résumé : Proportional-integral-derivative (PID) controller is widely used across various industrial process control applications because of its straightforward implementation. However, it can be challenging to fine-tune the PID parameters in practice to achieve robust performance. The paper proposes a model-based reinforcement learning (RL) framework to design PID controllers leveraging the probabilistic inference for learning control (PILCO) method and Kullback-Leibler divergence (KLD). Since PID controllers have a much more interpretable control structure than a network basis function, an optimal policy given by PILCO is transformed into a set of robust PID tuning parameters for underactuated mechanical systems. The presented method is general and can blend with several model-based and model-free algorithms. The performance of the devised PID controllers is demonstrated with simulation studies for a benchmark cart-pole system under disturbances and system parameter uncertainties.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.