Conditional Visual Servoing for Multi-Step Tasks
Auteurs : Sergio Izquierdo, Max Argus, Thomas Brox
Résumé : Visual Servoing has been effectively used to move a robot into specific target locations or to track a recorded demonstration. It does not require manual programming, but it is typically limited to settings where one demonstration maps to one environment state. We propose a modular approach to extend visual servoing to scenarios with multiple demonstration sequences. We call this conditional servoing, as we choose the next demonstration conditioned on the observation of the robot. This method presents an appealing strategy to tackle multi-step problems, as individual demonstrations can be combined flexibly into a control policy. We propose different selection functions and compare them on a shape-sorting task in simulation. With the reprojection error yielding the best overall results, we implement this selection function on a real robot and show the efficacy of the proposed conditional servoing. For videos of our experiments, please check out our project page: https://lmb.informatik.uni-freiburg.de/projects/conditional_servoing/
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.