"Flux+Mutability": A Conditional Generative Approach to One-Class Classification and Anomaly Detection

Auteurs : C. Fanelli, J. Giroux, Z. Papandreou

30 pages, 14 figures

Résumé : Anomaly Detection is becoming increasingly popular within the experimental physics community. At experiments such as the Large Hadron Collider, anomaly detection is at the forefront of finding new physics beyond the Standard Model. This paper details the implementation of a novel Machine Learning architecture, called Flux+Mutability, which combines cutting-edge conditional generative models with clustering algorithms. In the `flux' stage we learn the distribution of a reference class. The `mutability' stage at inference addresses if data significantly deviates from the reference class. We demonstrate the validity of our approach and its connection to multiple problems spanning from one-class classification to anomaly detection. In particular, we apply our method to the isolation of neutral showers in an electromagnetic calorimeter and show its performance in detecting anomalous dijets events from standard QCD background. This approach limits assumptions on the reference sample and remains agnostic to the complementary class of objects of a given problem. We describe the possibility of dynamically generating a reference population and defining selection criteria via quantile cuts. Remarkably this flexible architecture can be deployed for a wide range of problems, and applications like multi-class classification or data quality control are left for further exploration.

Soumis à arXiv le 19 Avr. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.