CP2: Copy-Paste Contrastive Pretraining for Semantic Segmentation

Auteurs : Feng Wang, Huiyu Wang, Chen Wei, Alan Yuille, Wei Shen

Résumé : Recent advances in self-supervised contrastive learning yield good image-level representation, which favors classification tasks but usually neglects pixel-level detailed information, leading to unsatisfactory transfer performance to dense prediction tasks such as semantic segmentation. In this work, we propose a pixel-wise contrastive learning method called CP2 (Copy-Paste Contrastive Pretraining), which facilitates both image- and pixel-level representation learning and therefore is more suitable for downstream dense prediction tasks. In detail, we copy-paste a random crop from an image (the foreground) onto different background images and pretrain a semantic segmentation model with the objective of 1) distinguishing the foreground pixels from the background pixels, and 2) identifying the composed images that share the same foreground.Experiments show the strong performance of CP2 in downstream semantic segmentation: By finetuning CP2 pretrained models on PASCAL VOC 2012, we obtain 78.6% mIoU with a ResNet-50 and 79.5% with a ViT-S.

Soumis à arXiv le 22 Mar. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.