EcoFusion: Energy-Aware Adaptive Sensor Fusion for Efficient Autonomous Vehicle Perception

Auteurs : Arnav Vaibhav Malawade, Trier Mortlock, Mohammad Abdullah Al Faruque

Accepted to be published in the 59th ACM/IEEE Design Automation Conference (DAC 2022)

Résumé : Autonomous vehicles use multiple sensors, large deep-learning models, and powerful hardware platforms to perceive the environment and navigate safely. In many contexts, some sensing modalities negatively impact perception while increasing energy consumption. We propose EcoFusion: an energy-aware sensor fusion approach that uses context to adapt the fusion method and reduce energy consumption without affecting perception performance. EcoFusion performs up to 9.5% better at object detection than existing fusion methods with approximately 60% less energy and 58% lower latency on the industry-standard Nvidia Drive PX2 hardware platform. We also propose several context-identification strategies, implement a joint optimization between energy and performance, and present scenario-specific results.

Soumis à arXiv le 23 Fév. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.