Width is Less Important than Depth in ReLU Neural Networks

Auteurs : Gal Vardi, Gilad Yehudai, Ohad Shamir

Résumé : We solve an open question from Lu et al. (2017), by showing that any target network with inputs in $\mathbb{R}^d$ can be approximated by a width $O(d)$ network (independent of the target network's architecture), whose number of parameters is essentially larger only by a linear factor. In light of previous depth separation theorems, which imply that a similar result cannot hold when the roles of width and depth are interchanged, it follows that depth plays a more significant role than width in the expressive power of neural networks. We extend our results to constructing networks with bounded weights, and to constructing networks with width at most $d+2$, which is close to the minimal possible width due to previous lower bounds. Both of these constructions cause an extra polynomial factor in the number of parameters over the target network. We also show an exact representation of wide and shallow networks using deep and narrow networks which, in certain cases, does not increase the number of parameters over the target network.

Soumis à arXiv le 08 Fév. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.