Document-Level Event Extraction via Human-Like Reading Process
Auteurs : Shiyao Cui, Xin Cong, Bowen Yu, Tingwen Liu, Yucheng Wang, Jinqiao Shi
Résumé : Document-level Event Extraction (DEE) is particularly tricky due to the two challenges it poses: scattering-arguments and multi-events. The first challenge means that arguments of one event record could reside in different sentences in the document, while the second one reflects one document may simultaneously contain multiple such event records. Motivated by humans' reading cognitive to extract information of interests, in this paper, we propose a method called HRE (Human Reading inspired Extractor for Document Events), where DEE is decomposed into these two iterative stages, rough reading and elaborate reading. Specifically, the first stage browses the document to detect the occurrence of events, and the second stage serves to extract specific event arguments. For each concrete event role, elaborate reading hierarchically works from sentences to characters to locate arguments across sentences, thus the scattering-arguments problem is tackled. Meanwhile, rough reading is explored in a multi-round manner to discover undetected events, thus the multi-events problem is handled. Experiment results show the superiority of HRE over prior competitive methods.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.