Intelligent Bearing Fault Diagnosis Method Combining Mixed Input and Hybrid CNN-MLP model

Auteurs : V. Sinitsin, O. Ibryaeva, V. Sakovskaya, V. Eremeeva

Licence : CC BY 4.0

Résumé : Rolling bearings are one of the most widely used bearings in industrial machines. Deterioration in the condition of rolling bearings can result in the total failure of rotating machinery. AI-based methods are widely applied in the diagnosis of rolling bearings. Hybrid NN-based methods have been shown to achieve the best diagnosis results. Typically, raw data is generated from accelerometers mounted on the machine housing. However, the diagnostic utility of each signal is highly dependent on the location of the corresponding accelerometer. This paper proposes a novel hybrid CNN-MLP model-based diagnostic method which combines mixed input to perform rolling bearing diagnostics. The method successfully detects and localizes bearing defects using acceleration data from a shaft-mounted wireless acceleration sensor. The experimental results show that the hybrid model is superior to the CNN and MLP models operating separately, and can deliver a high detection accuracy of 99,6% for the bearing faults compared to 98% for CNN and 81% for MLP models.

Soumis à arXiv le 16 Déc. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.