A Reactive Power Market for the Future Grid

Auteurs : Adam Potter, Rabab Haider, Giulio Ferro, Michela Robba, Anuradha M. Annaswamy

26 pages, 9 figures, 3 tables
Licence : CC BY 4.0

Résumé : As pressures to decarbonize the electricity grid increase, the grid edge is witnessing a rapid adoption of distributed and renewable generation. As a result, traditional methods for reactive power management and compensation may become ineffective. Current state of art for reactive power compensation, which rely primarily on capacity payments, exclude distributed generation (DG). We propose an alternative: a reactive power market at the distribution level designed to meet the needs of decentralized and decarbonized grids. The proposed market uses variable payments to compensate DGs equipped with smart inverters, at an increased spatial and temporal granularity, through a distribution-level Locational Marginal Price (d-LMP). We validate our proposed market with a case study of the US New England grid on a modified IEEE-123 bus, while varying DG penetration from 5% to 160%. Results show that our market can accommodate such a large penetration, with stable reactive power revenue streams. The market can leverage the considerable flexibility afforded by inverter-based resources to meet over 40% of reactive power load when operating in a power factor range of 0.6 to 1.0. DGs participating in the market can earn up to 11% of their total revenue from reactive power payments. Finally, the corresponding daily d-LMPs determined from the proposed market were observed to exhibit limited volatility.

Soumis à arXiv le 05 Oct. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.