The Moderating Effect of Gender on Adopting Digital Government Innovations in Ethiopia

Auteurs : Debas Senshaw, Hossana Twinomurinzi

In proceedings of the 1st Virtual Conference on Implications of Information and Digital Technologies for Development, 2021
Licence : CC BY-NC-SA 4.0

Résumé : Digital government innovation is being recognised as a solution to many problems faced by governments in providing services to their citizens. It is especially important for low-income countries where there are resource constraints. This research was aimed at exploring the moderating effect of gender on the adoption of a digital government innovation in Ethiopia based on the UTAUT model (n=270) and using structural equation modeling (SEM). The results reveal that gender only moderates the relationship between facilitating conditions and usage behavior of government employees to adopt the digital government innovation which is inconsistent with other findings. Another key finding was that even though the innovation was regarded as not being easy to use, women identified that they would still use it because of the social influence from the peers and the bosses. This finding suggests that women government employees who obtain external support are more likely to use digital government innovations compared with men who are unlikely to use it even if they were facilitated. The paper recommends that governments of low-income countries like Ethiopia should design appropriate policies that encourage women in digital government.

Soumis à arXiv le 23 Aoû. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.