Johnson-Lindenstrauss Lemma, Linear and Nonlinear Random Projections, Random Fourier Features, and Random Kitchen Sinks: Tutorial and Survey

Auteurs : Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, Mark Crowley

To appear as a part of an upcoming textbook on dimensionality reduction and manifold learning

Résumé : This is a tutorial and survey paper on the Johnson-Lindenstrauss (JL) lemma and linear and nonlinear random projections. We start with linear random projection and then justify its correctness by JL lemma and its proof. Then, sparse random projections with $\ell_1$ norm and interpolation norm are introduced. Two main applications of random projection, which are low-rank matrix approximation and approximate nearest neighbor search by random projection onto hypercube, are explained. Random Fourier Features (RFF) and Random Kitchen Sinks (RKS) are explained as methods for nonlinear random projection. Some other methods for nonlinear random projection, including extreme learning machine, randomly weighted neural networks, and ensemble of random projections, are also introduced.

Soumis à arXiv le 09 Aoû. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.