VinaFood21: A Novel Dataset for Evaluating Vietnamese Food Recognition

Auteurs : Thuan Trong Nguyen, Thuan Q. Nguyen, Dung Vo, Vi Nguyen, Ngoc Ho, Nguyen D. Vo, Kiet Van Nguyen, Khang Nguyen

Licence : CC BY-NC-SA 4.0

Résumé : Vietnam is such an attractive tourist destination with its stunning and pristine landscapes and its top-rated unique food and drink. Among thousands of Vietnamese dishes, foreigners and native people are interested in easy-to-eat tastes and easy-to-do recipes, along with reasonable prices, mouthwatering flavors, and popularity. Due to the diversity and almost all the dishes have significant similarities and the lack of quality Vietnamese food datasets, it is hard to implement an auto system to classify Vietnamese food, therefore, make people easier to discover Vietnamese food. This paper introduces a new Vietnamese food dataset named VinaFood21, which consists of 13,950 images corresponding to 21 dishes. We use 10,044 images for model training and 6,682 test images to classify each food in the VinaFood21 dataset and achieved an average accuracy of 74.81% when fine-tuning CNN EfficientNet-B0. (https://github.com/nguyenvd-uit/uit-together-dataset)

Soumis à arXiv le 06 Aoû. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.