Detecting Anomalous User Behavior in Remote Patient Monitoring

Auteurs : Deepti Gupta, Maanak Gupta, Smriti Bhatt, Ali Saman Tosun

Licence : CC BY 4.0

Résumé : The growth in Remote Patient Monitoring (RPM) services using wearable and non-wearable Internet of Medical Things (IoMT) promises to improve the quality of diagnosis and facilitate timely treatment for a gamut of medical conditions. At the same time, the proliferation of IoMT devices increases the potential for malicious activities that can lead to catastrophic results including theft of personal information, data breach, and compromised medical devices, putting human lives at risk. IoMT devices generate tremendous amount of data that reflect user behavior patterns including both personal and day-to-day social activities along with daily routine health monitoring. In this context, there are possibilities of anomalies generated due to various reasons including unexpected user behavior, faulty sensor, or abnormal values from malicious/compromised devices. To address this problem, there is an imminent need to develop a framework for securing the smart health care infrastructure to identify and mitigate anomalies. In this paper, we present an anomaly detection model for RPM utilizing IoMT and smart home devices. We propose Hidden Markov Model (HMM) based anomaly detection that analyzes normal user behavior in the context of RPM comprising both smart home and smart health devices, and identifies anomalous user behavior. We design a testbed with multiple IoMT devices and home sensors to collect data and use the HMM model to train using network and user behavioral data. Proposed HMM based anomaly detection model achieved over 98% accuracy in identifying the anomalies in the context of RPM.

Soumis à arXiv le 22 Jui. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.