Cosmic Velocity Field Reconstruction Using AI

Auteurs : Ziyong Wu, Zhenyu Zhang, Shuyang Pan, Haitao Miao, Xin Wang, Cristiano G. Sabiu, Jaime Forero-Romero, Yang Wang, Xiao-Dong Li

ApJ, 913, 2 (2021)
arXiv: 2105.09450v1 - DOI (astro-ph.CO)
10 pages, 6 figures, 4 tables, accepted for publication in ApJ
Licence : CC BY 4.0

Résumé : We develop a deep learning technique to infer the non-linear velocity field from the dark matter density field. The deep learning architecture we use is an "U-net" style convolutional neural network, which consists of 15 convolution layers and 2 deconvolution layers. This setup maps the 3-dimensional density field of $32^3$-voxels to the 3-dimensional velocity or momentum fields of $20^3$-voxels. Through the analysis of the dark matter simulation with a resolution of $2 {h^{-1}}{\rm Mpc}$, we find that the network can predict the the non-linearity, complexity and vorticity of the velocity and momentum fields, as well as the power spectra of their value, divergence and vorticity and its prediction accuracy reaches the range of $k\simeq1.4$ $h{\rm Mpc}^{-1}$ with a relative error ranging from 1% to $\lesssim$10%. A simple comparison shows that neural networks may have an overwhelming advantage over perturbation theory in the reconstruction of velocity or momentum fields.

Soumis à arXiv le 20 Mai. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.