An Extensive Analytical Approach on Human Resources using Random Forest Algorithm

Auteurs : Swarajya lakshmi v papineni, A. Mallikarjuna Reddy, Sudeepti yarlagadda, Snigdha Yarlagadda, Haritha Akkinen

Licence : CC BY 4.0

Résumé : The current job survey shows that most software employees are planning to change their job role due to high pay for recent jobs such as data scientists, business analysts and artificial intelligence fields. The survey also indicated that work life imbalances, low pay, uneven shifts and many other factors also make employees think about changing their work life. In this paper, for an efficient organisation of the company in terms of human resources, the proposed system designed a model with the help of a random forest algorithm by considering different employee parameters. This helps the HR department retain the employee by identifying gaps and helping the organisation to run smoothly with a good employee retention ratio. This combination of HR and data science can help the productivity, collaboration and well-being of employees of the organisation. It also helps to develop strategies that have an impact on the performance of employees in terms of external and social factors.

Soumis à arXiv le 07 Mai. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.